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Qualitative similarities and differences in visual
object representations between brains and deep
networks
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Deep neural networks have revolutionized computer vision, and their object representations

across layers match coarsely with visual cortical areas in the brain. However, whether these

representations exhibit qualitative patterns seen in human perception or brain representa-

tions remains unresolved. Here, we recast well-known perceptual and neural phenomena in

terms of distance comparisons, and ask whether they are present in feedforward deep neural

networks trained for object recognition. Some phenomena were present in randomly initi-

alized networks, such as the global advantage effect, sparseness, and relative size. Many

others were present after object recognition training, such as the Thatcher effect, mirror

confusion, Weber’s law, relative size, multiple object normalization and correlated sparse-

ness. Yet other phenomena were absent in trained networks, such as 3D shape processing,

surface invariance, occlusion, natural parts and the global advantage. These findings indicate

sufficient conditions for the emergence of these phenomena in brains and deep networks, and

offer clues to the properties that could be incorporated to improve deep networks.
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How do I know this is true?
I look inside myself and see.

Tao Te Ching1

Convolutional or deep neural networks have revolutionized
computer vision with their human-like accuracy on
object-recognition tasks, and their object representations

match coarsely with the brain2,3. Yet they are still outperformed
by humans4,5 and show systematic finer-scale deviations from
human perception6–9. Even these differences are largely quanti-
tative in that there are no explicit or emergent properties that are
present in humans but absent in deep networks. It is possible that
these differences can be fixed by training deep networks on larger
datasets, incorporating more constraints3 or by modifying net-
work architecture such as by including recurrence10,11.

Alternatively, there could be substantive qualitative differences
between how brains and deep networks represent visual infor-
mation. This is an important question because resolving quali-
tative differences might require non-trivial changes in network
training or architecture. A naïve approach would be to train deep
networks on multiple visual tasks and compare them with
humans, but the answer would be insightful only if networks fail
to learn certain tasks12. A more fruitful approach would be to
compare qualitative or emergent properties of our perception
with that of deep networks without explicitly training them to
show these properties.

Fortunately, many classic findings from visual psychology and
neuroscience report emergent phenomena and properties that
can be directly tested on deep networks. Consider for instance,
the classic Thatcher effect (Fig. 1a), in which a face with 180°
rotated parts looks grotesque in an upright orientation but looks
entirely normal when inverted13. This effect can be recast as a
statement about the underlying face representation: in perceptual
space, the distance between the normal and Thatcherized face is

presumably larger when they are upright than when they are
inverted (Fig. 1b). Indeed, this has been confirmed using dis-
similarity ratings in humans14. These distances can be compared
for any representation, including for a deep network (Fig. 1c).
Since deep networks are organized layer-wise with increasing
complexity across layers, measuring these distances would reveal
the layers at which the deep network begins to experience or “see”
a Thatcher effect (Fig. 1d).

Knowing whether deep networks exhibit such effects can be
insightful for several reasons. First, it would tell us whether the
deep network indeed does “see” the effect the way we do. Second,
this question can be asked of any deep network without explicit
training to produce this effect. For instance, testing this question
on network trained on object and face classification would reveal
which kind of training is sufficient to produce the Thatcher effect.
Finally, this question has relevance to neuroscience, because
object representations in the early and late layers of deep net-
works match with early and late visual processing stages in the
brain10,15. The layer at which this effect arises could therefore
reveal its underlying computational complexity and offer clues as
to its possible neural substrates.

Here, we identified as many emergent perceptual and neural
properties as possible from visual psychology and neuroscience
that can be recast as statements about distances between
images in the underlying perceptual/neural representation. To
investigate which properties arise due to architecture versus
training, we tested each property on both randomly initialized
deep networks as well as state-of-the-art deep networks trained
on object classification tasks. This revealed some properties
to be present in randomly initialized networks, some to be
present only after object classification training and yet others
that are absent after training. Such characterizations are an
important first step in our understanding particularly in the
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Fig. 1 Evaluating whether deep networks see the way we do. a In the classic Thatcher effect, when the parts of a face are individually inverted, the face
appears grotesque when upright (top row) but not when inverted (bottom row). Figure credit: Reproduced with permission from Peter Thompson. b When
the brain views these images, it presumably extracts specific features from each face so as to give rise to this effect. We can use this idea to recast the
Thatcher effect as a statement about the underlying perceptual space. The distance between the normal and Thatcherized face is larger when they are
upright compared to when the faces are inverted. This property can easily be checked for any computational model. Brain Image credit: Wikimedia Commons.
c Architecture of a common deep neural network (VGG-16). Symbols used here and in all subsequent figures indicate the underlying mathematical
operations perfomed in that layer: unfilled circle for convolution, filled circle for ReLu, diamond for maxpooling and unfilled square for fully connected layers.
Unfilled symbols depict linear operations and filled symbols depict non-linear operations. d By comparing the distance between upright and inverted
Thatcherized faces, we can ask whether any given layer of the deep network sees a Thatcher effect.
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absence of useful theoretical accounts of both vision and deep
networks.

Results
We identified as many emergent perceptual and neural properties
as possible that could be tested in deep networks without explicitly
training them on tasks. We organized these properties broadly
into five groups: (1) those that pertain to object or scene statistics,
namely the Thatcher effect, mirror confusion and object–scene
incongruence; (2) those that pertain to tuning properties of neu-
rons in visual cortex, namely multiple object tuning and correlated
sparseness; (3) those that pertain to relations between object fea-
tures, namely Weber’s law, relative size and surface invariance; (4)
those that pertain to 3D shape and occlusions and (5) those that
pertain to object parts and global structure.

For ease of exposition, we report below the results from a state-
of-the-art pre-trained feedforward convolutional network, VGG-
16, that is optimized for object classification on a large-scale image
database (ImageNet), which contains 1.2 million training images
across 1000 categories16. We also report the results of a randomly
initialized VGG-16 network. This serves as a control to confirm
that the property being investigated is due to training and not
solely due to the architecture. We obtained similar results for
another instance of the VGG-16 network trained with a different
random seed (Supplementary Section S1), and similar results
using several other feedforward deep networks varying widely in
their depth and architecture (Supplementary Section S2). Likewise,
we report all results here using Euclidean distance but obtained
similar results for other distance metrics (Supplementary Sec-
tion S3). Thus all our findings are generally true across a variety of
network architectures as well as distance metrics but are specific to
networks trained for visual object classification.

For each property, we performed an experiment in which we
used carefully controlled sets of images as input to the network
(in most cases , the same images as used in the behavioural/neural
experiments). For these images, we obtained the activations of the
units in each layer, and asked whether each layer shows that
property. For simplicity, we deemed a network to show a property
if it is present in the last fully connected layer, since the activa-
tions in this layer are used for eventual object classification.
Interestingly, in some cases, the property temporarily emerged in
intermediate or fully connected layers and vanished in the final
layer, suggesting that it may be required for intermediate level
computations but not for eventual classification.

Experiment 1: Do deep networks see a Thatcher effect? The
Thatcher effect is an elegant demonstration of how upright faces
are processed differently from inverted faces, presumably because
we encounter mostly upright faces. As detailed earlier, it can be
recast as a statement about the underlying distances in perceptual
space: that normal vs. Thatcherized faces are closer when inverted
than when upright (Fig. 2a). For each layer of the deep network
(VGG-16), we calculated a “Thatcher index” of the form
(dupright− dinverted)/(dupright+ dinverted), where dupright is the dis-
tance between normal and Thatcherized face in the upright
orientation, and dinverted is the distance between them in an
inverted orientation. Note that the Thatcher index for a pixel-like
representation (where the activation of each unit is proportional
to the brightness of each pixel in the image) will be zero since
dupright and dinverted will be equal. For human perception, since
dupright > dinverted, the Thatcher index will be positive. We esti-
mated perceptual dissimilarities from a previous study that
reported similarity scores between upright and inverted faces14.

We calculated the Thatcher index across layers for three
networks with similar architecture but differing in training (see

the “Methods” section). The first was VGG-16 which is trained
for object classification16. The second was VGG-face which is
trained for face recognition17. The third one was a randomly
initialized VGG-16 network (VGG-16-rand). The Thatcher index
for all three networks across layers is shown in Fig. 2b. It can be
seen that the VGG-16 shows a positive Thatcher index in two
convolutional layers (conv4 and conv5) and in the initial fully
connected layers but eventually showed a weak negative effect in
the final two fully connected layers (Fig. 2b). However, the
randomly initialized VGG-16 network showed no such effect
(Fig. 2b). By contrast, the VGG-face network showed a steadily
rising Thatcher effect across layers that remained high in the fully
connected layers (Fig. 2b). Thus, the Thatcher effect is strongest
in deep networks trained on upright face recognition, weakly/
temporarily present in networks trained on object recognition
and entirely absent in a randomly initialized network.

Experiment 2: Do deep networks show mirror confusion?
Mirror reflections along the vertical axis appear more similar to
us than reflections along the horizontal axis (Fig. 2c). This effect
has been observed both in behaviour as well as in high-level visual
cortex in monkeys18. To assess whether deep networks show
mirror confusion, we calculated a mirror confusion index of the
form (dhorizontal− dvertical)/(dhorizontal+ dvertical), where dhorizontal
and dvertical represent the distance between horizontal mirror
image pairs and between vertical mirror image pairs, respectively
(see the “Methods” section). Since vertical mirror images are
more similar in neurons, this index is positive (Fig. 2d). Across
the deep network VGG-16, we found an increasing mirror con-
fusion index across layers (Fig. 2d). This trend was absent in the
randomly initialized network (VGG-16 rand; Fig. 2d). Thus, like
human perception, deep networks also show stronger mirror
confusion for vertical compared to horizontal mirror images.

Experiment 3: Do deep networks show scene incongruence?
Our ability to recognize an object is hampered when it is placed in
an incongruent context19,20, suggesting that our perception is
sensitive to the statistical regularities of objects co-occurring in
specific scene context. To explore whether deep networks are also
sensitive to scene context, we gave as input the same images
tested on humans, and asked how the deep network classification
output changes with scene context (see the “Methods” section).

An example object (hatchet) placed against a congruent
context (forest) and incongruent context (supermarket) are
shown in Fig. 2e. The VGG-16 network returned a high
probability score in the congruent context (Fig. 2e, top row)
but gave a low probability score for the same object in an
incongruent context (Fig. 2e bottom row). We obtained similar
results across all congruent/incongruent scene pairs: the VGG-16
top-1 accuracy dropped substantially for incongruent compared
to congruent contexts (drop in accuracy from congruent to
incongruent scenes: 20% for top-5 accuracy; 27% for top-1
accuracy; Fig. 2f). On the same scenes, human object naming
accuracy also dropped for incongruent scenes, but the drop was
smaller compared to the VGG-16 network (drop in human
accuracy from congruent to incongruent scenes: 14% in the
Davenport and Potter, 2004; 13% in Munneke et al. 2013; Fig. 2g).
We note that assessing the statistical significance of the accuracy
difference in humans and deep networks is not straightforward
since the variation in accuracy reported are across subjects for
humans and across scenes for the VGG-16 network.

The above results are based on comparing classification
accuracy since that is the data available for scene incongruence
in humans. To characterize the progression of the scene
incongruence effect, we calculated the distance between each
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scene (object+ context) to the average feature vector for the
object. By this measure, incongruent scenes were further away
from the average compared to congruent scenes, and this effect
arose only in later layers of all networks (Supplementary
Section S4).

In sum, we conclude that deep networks also show scene
incongruence like humans, but to a larger degree suggesting that
they are more susceptible to contextual influences.

Experiment 4: Do deep networks show multiple object nor-
malization? Next we asked whether individual units in deep
networks conform to two general principles observed in single

neurons of high-level visual cortex. The first one is multiple
object normalization, whereby the neural response to multiple
objects is the average of the individual object responses at those
locations21. This principle is illustrated in Fig. 3a. Note that
this analysis is meaningful only for units that respond to all
three locations: a unit in an early layer with a small receptive
field would respond to objects at only one location regardless of
how many other objects were present in the image. To identify
units that are responsive to objects at each location, we cal-
culated the variance of its activation across all objects pre-
sented at that location. We then performed this analysis on
units that showed a non-zero response variance at all three
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orientations. b Thatcher index across layers of deep networks. For deep networks, we calculated the Thatcher index using Thatcherized faces from a
recently published Indian face dataset (see the “Methods” section) across layers for the VGG-16 (blue), VGG-face (red), and a randomly initialized VGG-16
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locations, which meant units in Layer 23 (conv4.3) onwards for
the VGG-16 network.

To assess whether deep networks show multiple object
normalization, we plotted for each unit in a given layer its
response to multiple objects against the sum of its responses to
the individual objects. If there is multiple object normalization,
the slope of the resulting plot should be 1/2 for two objects and
1/3 for three objects. The resulting plot is shown for Layer 37 of
the VGG-16 network (Fig. 3b). The overall slope was 0.60 for
two objects and 0.42 for three objects for all units. To evaluate
this effect across layers, we plotted the two-object and three-
object slopes obtained in this manner across layers (Fig. 3c). For
the later layers we observed a nearly monotonic decrease in the
slopes, approaching the levels observed in monkey high-level
visual areas (Fig. 3c).

Interestingly, we observed perfect divisive-normalization in
the randomly initialized VGG-16 (Fig. 3c). Upon closer
investigation, we found that the activations for any two natural
images were highly correlated (correlation for layer-37, mean
± s.d.: r= 0.98 ± 0.01), suggesting that these units were not
selective to images. In other words, every image activates the
network in the same way. As a result, the response to the
combination AB and the individual images A and B separately
would all be identical, giving rise to a perfect slope of 0.5 in the
relationship between the response AB and the sum of responses
A+ B. Thus, the divisive normalization observed in the
random network is a trivial outcome of its lack of image
selectivity.

We conclude that deep networks exhibit multiple object
normalization and image selectivity only after training.

Experiment 5: Do deep networks show correlated sparseness?
In a recent study we showed that neurons in the monkey inferior
temporal cortex have intrinsic constraints on their selectivity that
manifests in two ways22. First, neurons that respond to fewer shapes
have sharper tuning to parametric changes in these shapes. To assess
whether units in the deep network VGG-16 show this pattern, we
calculated the sparseness of each unit across a reference set of dis-
parate shapes (Fig. 3d), and its sparseness for parametric changes
between pairs of these stimuli (an example morph line is shown in
Fig. 3d). This revealed a consistently high correlation between the
sparseness on the reference set and the sparseness on the para-
metrically varying set, across units of each layer in the VGG-16
network (Fig. 3e). Second, we found that neurons that are sharply
tuned across textures are also sharply tuned to shapes. To assess this
effect across layers, we calculated the correlation across units
between sparseness on textures with the sparseness on shapes.
Although there was no such consistently positive correlation in the
early layers, we did find a positive correlation in the later (conv5 and
fc) layers (Fig. 3f). Importantly, we observed a similar, even stronger,
trend in the randomly initialized VGG-16 (Fig. 3e, f). We observed
similar results in other instances of VGG-16 (Supplementary Sec-
tion S1) and in feedforward networks (Supplementary Section S2).

We conclude that deep networks show correlated sparseness
along multiple dimensions just like neurons in high-level visual
cortex, and that this is a property of their architecture, and not
the training.

Experiment 6: Do deep networks show Weber’s law? Next we
asked whether deep networks are sensitive to relational prop-
erties in visual displays. The first and most widely known of
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these is Weber’s law, which states that sensitivity to just
noticeable changes in any sensory quantity is proportional to
the baseline level being used for comparison. The Weber’s law
for line length is depicted in Fig. 4a. This in turn predicts that
the distance between any two lines differing in length should be
proportional to the relative and not to the absolute change in
length. In a previous study, we showed that this is true for
humans in visual search for both length and intensity
changes23.

We therefore asked for the deep network VGG-16, whether
pairwise distances between lines of varying length are correlated
with absolute or relative changes in length (see the “Methods”

section). Specifically, if the correlation between pairwise distances
and relative changes in length is larger than the correlation with
absolute changes in length, we deemed that layer to exhibit
Weber’s law. This difference in correlation is positive for humans
in visual search, and we plotted this difference across layers of the
VGG-16 network (Fig. 4b). The correlation difference was
initially negative in the early layers of the network, meaning that
the early layers were more sensitive to absolute changes in length.
To our surprise, however, distances in the later layers were
sensitive to relative changes in length in accordance to Weber’s
law (Fig. 4b). Importantly, this trend was absent in the randomly
initialized VGG-16 (Fig. 4b), suggesting that Weber’s law arises
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Fig. 4 Relational properties in deep networks. a Example illustrating the Weber’s law for line length. Although the original statement of Weber’s law is
that the just-noticeable difference in length will depend on the baseline length, previous studies have shown that it also applies to perceptual distances23.
In this formulation, the perceptual distance across pairs of lines differing in length will be more correlated with relative changes in length rather than
absolute changes in length. b To calculate a single quantity that measures adherence to Weber’s law, we calculated the correlation between distances and
relative changes in length and subtracted the correlation between distances with absolute changes in length (see the “Methods” section). A positive
difference indicates adherence to Weber’s law (grey region). This difference in correlation is plotted across layers for line length in VGG-16 (blue) and a
VGG-16 with random weights (brown). The dashed line indicates the value observed during human performing visual search on the same stimuli.
c Schematic of the relative size encoding observed in monkey IT neurons24. Parts are coloured differently for illustration; in the actual experiments we used
black silhouettes. For a fraction of neurons, the distance between two-part objects when both parts covary in size is smaller than the distance when they
show inconsistent changes in size. Thus, these neurons are sensitive to the relative size of items in a display. d Relative size index across units with
interaction effects (averaged across top 7% tetrads, error bars representing s.e.m.) across layers of the VGG-16 network (blue) and a VGG-16 with random
weights (brown). The dashed line shows the strength of the relative size index estimated from monkey IT neurons on the same set of stimuli24. e Schematic
of the surface invariance index observed in monkey IT neurons25. For a fraction of neurons, the distance between two stimuli with congruent changes in
pattern and surface curvature is smaller than between two stimuli with incongruent pattern/surface changes. Thus, these neurons decouple pattern shape
from surface shape. f Surface invariance index across units with interaction effects (averaged across top 9% pattern/surface tetrads, error bars
representing s.e.m.) across layers of the VGG-16 network (blue) and a VGG-16 with random weights (brown). The dashed line depicts the surface
invariance index estimated from monkey inferior temporal neurons on the same set of stimuli25.
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due to training and not solely due to the network architecture.
We conclude that deep networks exhibit Weber’s law for length,
and that object classification training is sufficient to produce this
effect.

Experiment 7: Do deep networks encode relative size? We have
previously shown that neurons in high-level visual areas are
sensitive to the relative size of items in a display24. Specifically,
we found that, when two items in a display or two parts of an
object undergo proportional changes in size, the neural
response is more similar than expected given the two indivi-
dual size changes. This pattern was present only in a small
fraction (7%) of the neurons. This effect is illustrated in Fig. 4c.
To explore whether this effect can be observed in a given layer
of the deep network VGG-16, we performed a similar analysis.
We selected units in a given layer with the strongest interaction
between part sizes (see the “Methods” section) and calculated a
relative size index of the form (d1− d2)/(d1+ d2), where d1 is
the distance between stimuli with incongruent changes in size
(when one part increases and the other decreases in size), and
d2 is the distance between stimuli with congruent size changes
(i.e. where both parts are scaled proportionally up or down in
size). The relative size index was calculated for each tetrad
(formed using images in which the size of each part was varied
independently at two levels, resulting in a 2 × 2 tetrad) exactly
as in the previous study on monkey IT neurons24. The relative
size index for the VGG-16 network remained close to zero in
the initial layers and increased modestly to a positive level in
the later layers (Fig. 4d). However the size of this effect was far
smaller than that observed in IT neurons, but nonetheless was
in the same direction. Importantly, this trend was present
albeit weakly in a randomly initialized VGG-16 (Fig. 4d),
suggesting that it is partially a consequence of the network
architecture and is strengthened by training. We conclude that
deep networks represent relative size, and that this effect is
present due to the network architecture and is strengthened by
object recognition training.

Experiment 8: Do deep networks decouple pattern shape from
surface shape? A recent study showed that IT neurons respond
more similarly when a pattern and a surface undergo congruent
changes in curvature or tilt25. This effect is illustrated for a pat-
tern surface pair in Fig. 4e, where it can be seen that the distance
between incongruent pattern–surface pairs (where the pattern
and surface change in opposite directions) is larger than the
distance between congruent pairs where the pattern and surface
undergo similar changes. To assess whether the deep network
VGG-16 shows this property, we identified units with increased
interaction between surface curvature/tilt and pattern curvature/
tilt (see the “Methods” section) and calculated a surface invar-
iance index of the form (d1−d2)/(d1+ d2), where d1 is the dis-
tance between incongruent pairs (where the surface and pattern
undergo changes in opposite directions), and d2 is the distance
between congruent pairs (where the surface and pattern undergo
similar changes). A positive value of this index for a given layer
implies that the layer shows surface invariance. However, the
surface invariance index was consistently below zero across layers
for the VGG-16 network (Fig. 4f). We obtained similar trend even
for the randomly initialized VGG-16 (Fig. 4f). We conclude that
deep neural networks trained for object classification do not show
surface invariance.

Experiment 9: Do deep networks show 3d processing? We are
sensitive to three-dimensional shape and not simply two-
dimensional contours in the image. This was demonstrated in

an elegant experiment in which search for a target differing in 3D
structure is easy whereas search for a target with the same dif-
ference in 2D features is hard26,27. This effect can be recast as a
statement about distances in perceptual space as illustrated in
Fig. 5a. All three pairs of shapes depicted in Fig. 5a differ in the
same Y-shaped feature, but the two cuboids are more dissimilar
because they differ also in 3D shape. To assess whether units in a
given layer of the deep network show this effect, we calculated a
3d processing index of the form (d1-d2)/(d1+ d2) where d1 is the
distance between the cuboids and d2 is the distance between the
two equivalent 2D conditions. A positive 3D processing index
indicates an effect similar to human perception. However, we
found that the 3D processing index was consistently near zero or
negative across all layers of the VGG-16 network (Fig. 5b). We
found similar results for the randomly initialized VGG-16 net-
work (Fig. 5b). We conclude that deep networks are not sensitive
to 3D shape unlike humans.

Experiment 10: Do deep networks see occlusions as we do? A
classic finding in human perception is that we automatically
process occlusion relations between objects28. Specifically, search
for a target containing occluded objects among distractors that
contain the same objects unoccluded is hard, whereas searching
for the equivalent 2D feature difference is much easier (Fig. 5c,
top row). Likewise, searching for a target that is different in the
order of occlusion is hard, whereas searching for the equivalent
2D feature difference is easy (Fig. 5c, bottom row). These
observations demonstrate that our visual system has a similar
representation for occluded and unoccluded displays.

We therefore asked whether similar effects are present in the
VGG-16 network, by calculating an occlusion index of the form
(d2− d1)/(d2+ d1) where d1 is the distance between two
displays that are equivalent except for occlusion, and d2 is the
distance between equivalent displays with the same 2D feature
difference. A positive occlusion index implies an effect similar to
human perception. For humans, we calculated the occlusion
index using the reciprocal of search slopes reported in previous
studies28, since the reciprocal of search times have been shown to
behave like mathematical distance metric29. For the VGG-16
network, the occlusion index remained consistently negative but
approached zero across layers, for both the occlusion and depth
ordering effects (Fig. 5d). By contrast, we observed no such
increasing trend in the randomly initialized VGG-16 network
(Fig. 5d). Thus, object classification training modifies these effects
but still does not make them human-like. We conclude that deep
networks do not represent occlusions and depth ordering the
way we do.

Experiment 11: Do deep networks see object parts the way we
do? We not only recognize objects but are able to easily describe
their parts. We conducted two related experiments to investigate
part processing in deep networks. In Experiment 11A, we com-
pared deep network feature representations for whole objects and
for the same object with either natural or unnatural part cuts. In
perception, searching for an object broken into its natural parts
with the original object as distractors is much harder than
searching for the same object broken at an unnatural location30.
This result is depicted schematically in terms of the underlying
distances (Fig. 6a). To assess whether the VGG-16 network also
shows this part decomposition, we calculated a part processing
index of the form (du–dn)/(du+ dn) where du is the distance
between the original object and the object broken at an unnatural
location, and dn is the distance between the original object and
the same object broken at a natural location. A positive part
processing index implies an effect similar to that seen in
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perception. In perception, we calculated the part processing index
using the reciprocal of search slopes observed in humans during
visual search. The part processing index across layers of the
VGG-16 network is depicted in Fig. 6b. We found that the index
becomes positive in the intermediate layers, but becomes negative
in the subsequent layers (conv4/conv5 onwards). By contrast, we
observed no such decreasing trend in the randomly initialized
VGG-16 network (Fig. 6b), suggesting that object classification
training causes the part processing index to become negative.

In Experiment 11B, we asked what happens to objects that can
be decomposed into two possible ways without introducing a
break (Fig. 6c). In visual search, search between pairs of whole
objects is explained better using its natural parts than its
unnatural parts31. In other words, models that explain whole-
object dissimilarities using the constituent parts performed better
when the parts were the natural parts compared to the
unnatural parts.

To capture this effect, we defined the natural part advantage as
the difference in model correlation (see the “Methods” section)
between natural and unnatural parts for the distances calculated
in any given layer of the deep networks. A positive value indicates
an effect similar to perception. This natural part advantage is
shown across layers of the VGG-16 network in Fig. 6d. It can be
seen that there is little or no advantage for natural parts in most
layers except temporarily in the later layers (conv5/fc). We
observed similar trends for the randomly initialized VGG-16
network (Fig. 6d).

Based on Experiments 11A and 11B, we conclude that the
VGG-16 network shows no systematic part decomposition with
or without training.

Experiment 12: Do deep networks show a global shape
advantage? In perception a classic finding is that we see the forest
before the trees, i.e. we can detect global shape before local
shape32,33. We can recast this effect into a statement about dis-
tances in perception: the distance between two hierarchical sti-
muli differing only in global shape will be larger than the distance
between two such stimuli differing only in local shape. This is
depicted schematically in Fig. 6e. To calculate a single measure for
this effect, we defined a global advantage index as (dglobal–dlocal)/
(dglobal+ dlocal), where dglobal is the average distance between all
image pairs differing only in global shape and dlocal is the average
distance between all image pairs differing only in local shape. A
positive global advantage index implies an effect similar to per-
ception. For perception we measured the global advantage by
taking the reciprocal of search times as the perceptual distance29.

The global advantage index is depicted across layers of the VGG-
16 network in Fig. 6f. While there is a slight global advantage in the
initial layers, the network representation swings rapidly in the later
layers towards the opposite extreme, which is a local advantage.
This is likely due to increased pooling in the higher layers, but
interestingly the pre-trained VGG-16 network shows the opposite
pattern. Thus, it appears that object classification training abolishes
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the global advantage that is intrinsic to the network architecture.
We speculate that this local advantage might arise because of the
demands of distinguishing between highly similar categories present
in the ImageNet dataset (e.g. there are 90 categories of dogs among
the total of 1000 categories in ImageNet). Testing this possibility
will require training the VGG-16 architecture on highly distinctive
object classes.

Interestingly, the randomly initialized VGG-16 network
showed a clear global advantage (Fig. 6f). We conclude that
training deep networks for object classification abolishes the
global advantage and introduces a local advantage.

Discussion
Here we report qualitative similarities and differences in object
representations between brains and deep neural networks trained

for object recognition. We find that some properties are present
even in randomly initialized networks. Many others were present
in feedforward deep neural networks after training on object
classification. Yet others were absent even after training. These
results are summarized in Table 1. Our findings generalized
across other instances of VGG-16 (Supplementary Section S1), to
other feedforward neural networks (Supplementary Section S2)
and across distance metrics (Supplementary Section S3). They
however apply only to feedforward neural networks trained for
object classification.

These findings are important for several reasons. First, they
describe qualitative similarities and differences in object repre-
sentations between brains and deep networks trained for object
recognition. These findings clarify the conditions under which
deep networks can and cannot be considered accurate models of
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biological vision. Second, they show that some effects arise in
deep networks solely due to their architecture, some arise after
object classification training, and others are absent even despite
training. Third, the missing properties could be incorporated as
training or architecture constraints on deep networks to yield
better or more robust performance. Below we discuss our findings
in the context of the existing literature.

We first address some general concerns. First and foremost, it
could be argued that our results are based on testing with artificial
objects or images, and that it is unreasonable to expect deep
networks to respond sensibly to unnatural images. However, these
concerns apply equally to humans as well, who in fact do respond
sensibly to these artificial displays often without any prior expo-
sure. Indeed, there is a long tradition in psychology and neu-
roscience of using artificial images to elucidate visual processing34.
Second, it could be argued that deep networks could potentially be
trained to report all the tested properties. However, such a finding
would only be circular if the network did indeed exhibit the
property it was trained for. We do note however that it would be
interesting if deep networks were unable to learn certain proper-
ties. Indeed, certain relational properties have been reported as
difficult to learn by computer vision algorithms12, although this
study did not evaluate deep neural networks. By contrast, our
results are more insightful, since they reveal which emergent
properties arise in deep networks without explicit task training.

Properties present in randomly initialized networks. We have
found that several properties are present in randomly initialized
deep networks, such as correlated sparseness, relative size
encoding, and global advantage. It suggests that the network
architecture itself can give rise to interesting properties. It is
consistent with the important but neglected finding that even a
randomly initialized network can generate useful features35,36.
Even early visual responses in human MEG data were recently
predicted using a randomly initialized deep neural network37. We
speculate that additional object properties might be incorporated
by modifying the architecture of deep networks.

Properties present in deep networks trained for object recog-
nition. We found that many properties were present in deep
networks only after training on object classification. Our finding
that deep networks exhibit Weber’s law is puzzling at first glance.
Why would the demands of recognizing objects require sensitivity
to relative changes? One possibility is that object recognition
requires a representation invariant to changes in size, position,
viewpoint and even illumination of objects in the image, which in
turn requires processing all object features relative to the sur-
rounding features. This could be tested by training deep networks

on controlled sets of images with variations of one kind but not
the other. It is also possible that there are other task requirements
that could give rise to Weber’s law38. Our finding that deep
networks exhibit the Thatcher effect, mirror confusion and scene
incongruence are consistent with them being sensitive to image
regularities in scenes. In fact, deep networks may be over-reliant
on scene context, because it showed a larger drop in accuracy for
incongruent scenes compared to humans (Fig. 2f). This is con-
sistent with a previous study in which human scene expectations
benefited deep network performance39.

Properties absent in deep networks. We have found that both
randomly initialized and object-trained deep networks did not
exhibit 3D processing, occlusions and surface invariance, sug-
gesting that these properties might emerge only with additional
task demands such as evaluating 3D shape. Likewise, the absence
of any part processing or global advantage in deep networks
suggests that these too might emerge with additional task
demands, such as part recognition or global form recognition40.
We have found that deep networks do not show a global
advantage effect but instead seem to process local features. This
finding is surprising considering that units in later layers receive
convergent inputs from the entire image. However, our finding is
consistent with reports of a bias towards local object texture in
deep networks41. It is also consistent with the large perturbations
in classification observed when new objects are added to a
scene42, which presumably change the distribution of local fea-
tures. Our finding that deep networks experience large scene
incongruence effects is therefore likely to be due to mismatched
local features rather than global features. Indeed, incorporating
scene expectations from humans (presumably driven by global
features) can lead to substantial improvements in object
recognition39. Finally, a reliance on processing local features is
probably what makes deep networks detect incongruously large
objects in scenes better than humans43. We speculate that
training on global shape could make deep networks more robust
and human-like in their performance.

Finally, we note that some properties temporarily emerged in
intermediate layers but are eventually absent in the final fully
connected layers important for classification (Figs. 2b, 4d, 6f). We
do not have an adequate explanation, but it is possible that these
reflect intermediate computations required to create the final
representation needed for classification. In the brain likewise,
there could be many properties in the intermediate visual areas
like V4 that are not necessarily present in early or final stages44.
Indeed the early, intermediate, and later stages of ventral pathway
in the primate brain coarsely correspond to early, middle, and
later layers of a deep neural network10,15. Elucidating these

Table 1 Presence/absence of each effect across deep networks tested.

Perceptual effect VGG-16 random VGG-16 AlexNet GoogLeNet ResNet-50 ResNet-152

Thatcher effect No No No Yes No No
Mirror confusion No Yes Yes Yes Yes Yes
Scene incongruence No Yes Yes Yes Yes Yes
Multiple objects No Yes Yes Yes Yes Yes
Correlated sparseness Yes Yes Yes Yes Yes Yes
Weber’s law No Yes Yes Yes Yes Yes
Relative size Yes Yes Yes Yes Yes Yes
Surface invariance No No No No No No
3D processing No No No No No No
Occlusion No No No No No No
Depth ordering No No No No No No
Object parts No No No No No No
Global advantage Yes No No No No No
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intermediate representations is therefore an interesting topic for
further study.

How can deep networks be improved using these insights? Can
learning on different datasets and tasks influence the features
learned in a deep neural network and bring them closer to the
representations found in the brain? Recent evidence shows that
deep neural networks trained on specific tasks (like scene parsing)
can explain the responses in functionally specific brain regions
(like the occipital place area that is known to be involved in
recognizing navigational affordances) better than a deep neural
network trained on a different task45. In addition, advances in
unsupervised learning have led to deep neural networks with
feature representations that can not only transfer better to other
tasks but also predict neural data better than supervised
models46,47. Yet other studies have attempted to improve deep
networks by augmenting them with perceptual or neural
representations39,48. How can deep networks be made to match
neural and perceptual representations? There could be several
ways of doing so. The first and perhaps most promising direction
would be to explicitly train deep networks to produce such
properties in addition to categorization49. Another alternative
would be to train deep networks on tasks such as navigation or
agent–object interaction rather than (or in addition to) object
recognition as this is ostensibly what humans also do50,51.

Finally, we note that deep networks are notoriously susceptible
to adversarial attacks. State-of-the-art deep neural networks have
been shown to fail catastrophically when input images are
subjected to carefully constructed changes that are barely
perceivable to the human eye52,53. Likewise, deep networks can
give erroneous predictions on completely nonsensical images54

and produce natural image metamers that are unrecognizable for
humans55. What could underlie such unusual behaviour? One
possible reason could be the tendency for deep networks to
prioritize local features as described earlier. Another is that these
adversarial images can contain some weakly relevant features
used by humans56 and could be adversarial even for humans at
brief viewing durations57. We speculate that training deep
networks to exhibit all the perceptual and neural properties
described in this study might not only improve their performance
but also make them more robust to adversarial attacks.

Methods
VGG-16 network architecture and training. All experiments reported in the main
text were performed on the VGG-16 network, a feedforward pre-trained deep
convolutional neural network trained for object classification on the ImageNet
dataset58. In Supplementary Sections 1 and 2, we show that these results generalize
to other instances of VGG-16 as well as to other feedforward architectures. We
briefly describe the network architecture here, and the readers can refer to the
original paper for more details16. The network takes as input an RGB image of size
224 × 224 × 3, and returns a vector of confidence scores across 1000 categories. We
subtracted the mean RGB value across all images (mean values across all images: R
= 123.68, G= 116.78, B= 103.94). In the network, the image is passed through a
stack of convolutional filters (Fig. 1c), where the initial layers have small receptive
field (3 × 3) and later layers are fully connected. A non-linear rectification (ReLu)
operation is performed after each convolution operation. Five max-pooling layers
are present to spatial pool the maximum signal over a 2 × 2 window of neurons.
We used the MATLAB-based MatConvNet software platform59 to extract features
and do the analysis. In addition to VGG-16, we also used VGG-face which has the
same architecture but trained instead on face identification17.

Feature extraction. We passed each image as input to the network, and stored the
activations of each layer as a column vector. Hence, a single image we will have 37
feature vectors (one column vector from each layer). To calculate the distance
between images A and B, we calculated the Euclidean distance between the cor-
responding activation vectors.

For each experiment, we defined a specific measure and plotted it across layers
with a specific chain of symbols as shown in Fig. 1c. Symbols used indicate the
underlying mathematical operations performed in that layer: unfilled circle for
convolution, filled circle for ReLu, diamond for maxpooling and unfilled square for

fully connected layers. Broadly, filled symbols denote linear operations and unfilled
ones indicate non-linear operations.

Experiment 1: Thatcher effect. The stimuli comprised 20 co-registered Indian
faces (19 male, 1 female) from the IISc Indian Face Dataset5. All faces were
grayscale, upright and front-facing. To Thatcherize a face, we inverted the eyes and
mouth while keeping rest of the face intact. We implemented inversion by first
registering facial landmarks on frontal faces using an Active appearance model-
based algorithm60. Briefly, this method models face appearance as a two-
dimensional mesh with 76 nodes, each node represents local visual properties of
stereotyped locations such as corners of eyes, nose, and mouth. We then defined
bounding boxes for left and right eye as well as mouth, by identifying landmarks
that correspond to the four corners of each box. We then locally inverted eye and
mouth shape by replacing the top row of eye or mouth image pixels by the last row
and likewise repeating this procedure for each pair of equidistant pixels rows above
and below the middle of the local region. The inversion procedure was imple-
mented as a custom script written in MATLAB.

To calculate a single measure for the Thatcher effect, we calculated the Thatcher

index defined as
dupright � dinverted
dupright þ dinverted

, where dupright is the distance between an normal face

and Thatcherized face in upright orientation and dinverted is the distance between a
normal face and Thatcherized face in inverted orientation. We estimated the
Thatcher index for humans from the similarity ratings reported from humans
albeit on a different set of faces14. We calculated the Thatcher index after
converting the similarity rating (humans gave a rating between 1 and 7 on pair of
images) into a dissimilarity rating (dissimilarity rating= 7−similarity rating).

Experiment 2: Mirror confusion. The stimuli consisted of 100 objects (50 nat-
uralistic objects and 50 versions of these objects made by rotating each one by 90°).
We created a horizontal and vertical mirror image of each object. Keeping both
original and 90° rotated versions of each object ensured that there was no spurious
difference between vertical vs horizontal images simply because of objects being
horizontally or vertically elongated. We then gave as input the original image and
the two mirror images to the VGG-16 network and calculated for each layer the
distance between the object and two mirror images.

To calculate a single measure for mirror confusion, we defined a mirror
confusion index of the form dhorizontal � dvertical

dhorizontal þ dvertical
, where dhorizontal is the distance between an

object and its horizontal mirror image and dvertical is the distance between an object
and its vertical mirror image. We estimated the strength of mirror confusion index in
the brain using previously published data from monkey IT neurons18. Specifically,
we took dhorizontal to be the reported average firing rate difference between the
original objects and its horizontal mirror image, and analogously for dvertical.

Experiment 3: Scene incongruence. The stimuli consisted of 40 objects which was
taken from previous studies: 17 objects were from the Davenport study19 and the
remaining 23 from the Munneke study20. We discarded 11 objects from Davenport
study and 5 objects from Munneke study since they did not have a matching
category label in the ImageNet database. Each object was embedded against a
congruent and an incongruent background.

We measured the classification accuracy (Top-1 and Top-5) of the VGG-16
network for the objects pasted onto congruent and incongruent scenes. The final
layer of VGG-16 (Layer 38) returns a probability score for all 1000 categories in the
ImageNet database. The top-1 accuracy is calculated as the average accuracy with
which the object class with the highest probability matches the ground-truth object
label. The top-5 accuracy is calculated as the average accuracy with which the
ground-truth object is present among the object classes with the top 5 probability
values. We report the human (object naming) accuracy on the same dataset from
previous studies19,20.

Experiment 4: Multiple object normalization. The stimuli consisted of 49 natural
grayscale objects. To investigate responses to individual objects and to multiple
objects, we created 147 singleton images by placing each of the 49 objects at 3
possible locations (Fig. 4a). We then created 200 object pairs and 200 object triples
by random selection. We extracted features for all images (singletons, pairs and
triplets) from every layer of the CNN. We selected a unit for further analysis only if
the unit responded differently to at least one of the images in all the three positions.
We then plotted the sum of activations of selected units in a layer to the singleton
images against the activation for the corresponding pairs (or triplets). The slope of
this scatterplot across layers was used to infer the nature of normalization in CNNs
—a slope of 0.5 for pairs and 0.33 for triplets indicated divisive normalization
matching that observed in high-level visual cortex.

Experiment 5: Selectivity along multiple dimensions. Here we used the stimuli
used in a previous study to assess the selectivity of IT neurons along multiple
dimensions22. These stimuli consisted of 8 reference shapes (Fig. 3d; top row) and
created intermediate parametric morphs between pairs of these shapes (Fig. 3d;
example morph between camel to cat). In addition, to compare texture and shape
selectivity, we used 128 natural textures and 128 silhouette shapes.
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As before we calculated the activation of every layer of the VGG-16 network to
each of the above stimuli are input. Visually active neurons were selected by finding
units with a non-zero variance across this stimulus set. We found the visually active
neurons for each set separately and we selected a unit for further analysis only if
that unit is visually active for both sets. The response of each unit was normalized
between 0 and 1. We then calculated the sparseness of each unit across different
stimulus sets: the reference set, the four morphlines, shape set and texture set. For a
given stimulus set with responses r1, r2, r3,…, rn, where n is the number of stimuli,

the sparseness is defined as follows: S ¼ 1�
∑ri
n

� �2

∑
r2
i
n

 !

= 1� 1
n

� �
22,61. We then

calculated the correlation across neurons between the sparseness on one stimulus
set versus another stimulus set.

Experiment 6: Weber’s Law. To test for the presence of Weber’s law in the deep
network, we created images of a rectangular bar varying in the length. We selected
bar lengths such that the length difference computed on pairs of images spanned a
wide range both in terms of absolute as well as relative differences.

For each layer of the neural network, we extracted the activations for each
image and then computed the pairwise dissimilarity for all image pairs. We then
computed the correlation rabs between pairwise dissimilarities and absolute length
differences (i.e. between dij and Δij= |Li − Lj| across all images i & j, where dij is the
distance between and Li, Lj are the bar lengths. We also calculated the correlation
rrel between pairwise dissimilarity and relative length differences (i.e. between dij

and Δij ¼
Li � Ljj j

0:5 � Li þ Ljð Þ across all images i & j). The difference rrel−rabs is expected to

be positive if the representation follows Weber’s law. For humans, we calculated
this correlations by taking the distance to be the reciprocal of search time for the
corresponding pairs of lines.

We also analysed deep networks for the presence of Weber’s law for image
intensity, but found highly inconsistent and variable effects. Specifically, the pre-
trained VGG-16 network showed Weber’s law for low image intensity levels but
not for high intensity levels.

Experiment 7: Relative size. We used the stimuli used in a previous study to test
whether units in the VGG-16 network encode relative size24. This stimulus set
consisted of 24 tetrads. A sample tetrad is shown in Fig. 2d, with the stimuli
arranged such that images that elicit similar activity are closer.

In our previous study24, only a small fraction of neurons (around 7%) encoded
relative size. To identify similar neurons in the deep network, we first identified the
visually responsive units by taking all units with a non-zero variance across the
stimuli. For each unit and each tetrad, we calculated a measure of size interactions
of the form abs(r11+ r22–r12–r21), where r11 is the response to both parts at size
1, r12 is the response to part 1 at size 1 and part 2 at size 2, etc. We then selected
the top 7% of all tetrads with the largest interaction effect. Note that this step of
selection does not guarantee the direction of the relative size effect. For the selected
tetrads, we calculated the relative size index, defined as d1 � d2

d1 þ d2
where d1 and d2 are

distances between the incongruent and congruent stimuli respectively.

Experiment 8: Surface invariance. The stimuli consisted of six patterns super-
imposed on four surfaces. Each pattern–surface pair was used to create a tetrad of
stimuli as depicted in Fig. 4e. The full stimulus set consisted of 24 tetrads, which
were a subset of those tested in our previous study25.

In each VGG-16 layer, we selected visually responsive neurons and normalized
their responses across all stimuli as before in Experiment 5. We then selected the
top 9% of all tetrads with an interaction effect calculated as before, as with the
previous study25. For all the selected tetrads we calculated the surface invariance
index, defined as d1 � d2

d1 þ d2
where d1 and d2 are distances between incongruent and

congruent stimuli.

Experiment 9: 3D processing. We investigated 3D processing in the VGG-16
network by comparing line drawing stimuli used in a previous perceptual study27.
We compared three pairs of shapes: cuboid, cube and frustum of square in iso-
metric view with the corresponding Y junctions. For each shape, we calculated
three distances between equivalent shape pairs with the same feature difference
(Fig. 5a). We calculated a 3D processing index, defined as d1 � d2

d1 þ d2
where d1 and d2 are

distances between the 3D shape and control conditions, respectively. To calculate
the index for humans, we took the distances as the reciprocal of search slopes
reported in the study for each condition.

Experiment 10: Occlusions. We recreated the stimulus set used in a previous
study62 as depicted in Fig. 5c. As before we compared the distance between two
pairs of shapes: a pair that differed in occlusion status (occluded vs. unoccluded, or
two images that differed in their order of occlusion), and an equivalent 2D feature
control containing the same feature difference. We then calculated an occlusion
index defined as d1 � d2

d1 þ d2
where d1 and d2 are the distances between the occluded and

control conditions, respectively. To calculate the index for humans, we took the
distances as the reciprocal of search slopes reported in the study for each condition.

Experiment 11: Object parts. We performed two experiments to investigate part
processing in deep networks. In Experiment 11A, we tested what happens when a
break is introduced into an object at a natural cut or an unnatural cut30. The
critical comparison is shown in Fig. 6a. For each layer of the CNN, we extracted
features for the three objects and computed the distance of the intact object with
each of the broken objects (dn and du denote distances to the broken objects with
natural and unnatural parts, respectively). We then computed a part processing
index, defined as du � dn

du þ dn
.

In Experiment 11B, we asked whether whole object dissimilarities computed on
CNN feature representations could be understood as a linear combination of
dissimilarities between their natural or unnatural part decompositions as reported
previously for visual search31. We considered seven whole objects that could be
broken down into either natural or unnatural parts and recombined the parts to
form other objects. That is, we created two sets each containing 49 objects made
either from natural or unnatural parts of the original seven objects. We then
selected 492 pairs of objects from each set (including all 21 pairs from the common
set) and calculated the feature distances from each layer of the CNN. We fit a part
summation model to explain pairwise whole-object distances as a function of
pairwise part relations31.

Briefly the part summation model uses pairwise relations between parts to
predict pairwise dissimilarities between objects. For two objects AB and CD (made
of parts A, B, C, D), the dissimilarity is given by d(AB,CD)= CAC+ CBD+ XAD+
XBC+WAB+WCD+ constant, where CAC & CBD represent part relations between
corresponding parts of the two objects, XAD & XBC represent part relations between
parts at opposite locations in the two objects and WAB & WCD represent part
relations within each object. Since there are 49 objects, and therefore 49C2= 1176
pairwise dissimilarities between objects, there are 1176 equations that can be
written for the part-sum model. However, since there are only 7 parts, each set of
terms (C, W & X terms) have only 7C2= 21 part relations. This linear system of
equations thus contains 1176 equations and 21 × 3+ 1= 64 unknown terms that
can be estimated using linear regression.

Having fit the part-sum model to each layer, we compared model performance
on the 21 pairwise distances between the common objects. We denoted by rnatural
the correlation between observed and predicted distances assuming natural part
decomposition and by runnatural the model correlation assuming unnatural part
decomposition. The natural part advantage was computed as (rnatural− runnatural).
The same measure was computed for human perception.

Experiment 12: Global shape advantage. We created a set of 49 hierarchical
stimuli by combining seven shapes at global scale and the same seven shapes at
the local scale63. For human perception, we calculated distances as the reci-
procal of the average search time for each image pair. For CNNs, we extracted
features from each layers and calculated the Euclidean distance between all pairs
of stimuli. We calculated the global distance as the mean distance between
image pairs having only global change. Similarly, we calculated the local dis-
tance as the mean distance between image pairs having only local change. A
sample global/local change pair is shown in Fig. 6e. We calculated a global
advantage index as dGlobal � dLocal

dGlobal þ dLocal
.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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